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A two-dimensional reaction-diffusion front which propagates in a modulated medium is studied. The modu-
lation consists of a spatial variation of the local front velocity in the transverse direction to that of the front
propagation. We study analytically and numerically the final steady-state velocity and shape of the front,
resulting from a nontrivial interplay between the local curvature effects and the global competition process
between different maxima of the control parameter. The transient dynamics of the process is also studied
numerically and analytically by means of singular perturbation technif84663-651X97)06610-3

PACS numbe(s): 47.54+r, 03.40.Kf, 47.20.Ky

I. INTRODUCTION characterize and explain these facts within an analytical
framework based on singular perturbation techniques, and
The study of propagating fronts has been a problem ofrovide simple analytical criteria to predict the velocity and
great interest in a rich variety of very different situations the qualitative shape of the stationary front shape for differ-
[1-3]. The steady-state velocity and shape of the front ar@nt kinds of spatial modulations. An experimental text of this
problems not yet satisfactorily solved in many situations. Al-Selection problem was presented, for a photosensitive ver-
though different kinds of fronts can be defined in many con-Sion of the Belousov-Zhabotinsky reaction, in Ref3].

texts, it is commonly accepted that they can be classified and The paper is organized as follows. In Sec. Il, the interface
then studied in a general framework. In this paper we willdynamics in generic reaction-diffusion systems is briefly re-
consider stable fronts which propagate with a fixed velocityviewed, and the extension of the theory to smooth modulated
and flat shape if the medium is isotropic and homogeneoudnedia is performed. Section Il is devoted to the main prob-
This type of situation can be modeled by a reaction-diffusionlem, namely the description of the competition process. The
equation for the order parameter. The phenomenology of thifinal stationary state is characterized in Sec. IV, where the
situation is well known[4—10. Here we will consider the number of surviving fingers and the stationary velocity of the
case of a front moving in a nonhomogeneous medium.
Within this general framework we will assume that some
parameter controlling the local front velocity presents a ST SO S . S A .

[
transversal spatial modulation. This has been the case for ,,

several experiments of chemical waves propagating into
modulated excitable med[d1-13, in which stationary pat-
terns with a fixed velocity were obtained by maintaining spa-
tial modulations of the chemical excitability of the medium.
Our present study shows that the selected stationary pat-
tern and the corresponding propagation velocity result from a
nontrivial global competition process between different
maxima of the local velocity, which are coupled through
local curvature effects. An example of such competition is
shown in Fig. 1(top), where there exists a modulatipRig.
1 (bottom] in the x direction of the local front velocity(x).
Starting from a planar front, the system initially mimics the 0 50 100 150 200
modulating function by developing as many front maxima,
which hereinafter W(? will calflngers'as local maxima pre- FIG. 1. Temporal evolution of an initially planar front. Fronts
sented by that function. The evolution of each one of thesg e shown in the frame comoving with the fastest fing®r At
fingers, moving with different velocities, turns out to dependearly times, the frony(x,t) mimics the modulated local velocity
on the local details oti(x) around the maxima. That gives y(x) with eight maximabottom. Three slow fingers are eliminated
rise to a slow competition process where some of the compefore the front reaches the stationary shape with only five fingers.
peting fingers are eliminated and some others survive. FiSee more details in the text. The front is plotted at times 0,10, 20,
nally, the resulting stationary pattern may be quite differen200, 2500, 15 000, and 30 0@$olid line). Also see the discussion
from the initial one. The main objective of this paper is to at the end of Sec. IV.
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whole front are determined for the case of smooth modula- In order to study the influence of a spatial modulation of
tions. A particular case in which the spatial variation is notthe medium on the front dynamics we consider an explicit
smooth, and consists of a homogeneous stripe of a largepatial dependence in the reaction term of 8&g. This de-
velocity surrounded by a homogeneous area with a smallggendence is introduced through a modulation of an external
one, is analyzed in detail in Sec. V. In Sec. VI, we summa-control parameterw. By considering an orthogonal fixed
rize our main results and make some final remarks. Numeriframe (x,y) with the y axis along the direction of propaga-
cal results are presented along the paper showing an excelen of the front, we define our model equation as

lent agreement with the analytical predictions. ”
EZVZQH a(X)F(e). )
Il. LOCAL EQUATION OF MOTION

Our starting point is a field model of a two-dimensional This particular way to introduce the modulation has two re-

system with scalar order parametﬁ(F ,t) governed by the str;_ctln? fetatu_re?h First, tthe rr}[odula_tllzn appeail_][fs astr? mU|t(ij|I|-
generic reaction-diffusion equatid@—9| cative factor in the reaction term. This simplifies the mode

by preserving the homogeneous stationary states, and modu-

” lates only the strength of the driving force acting on the

— =V2$+F (). (1)  front. Second, and most importantly, the modulation has only
ot a spatial dependence in the transverse direction to the front

propagation. This situation is interesting by itself, as shown

The reaction kinetic terrr () is assumed to be a nonlinear by existing experiments designed under these conditions

continuous function that allows the existence of two homo{11-13.

geneous stationary states or phaseés, and ¢,, i.e., When such a modulation of the reaction term is present,

F(¢1)=F(¢,)=0. The interface between these two phaseghe planar front is no longer a solution, and E2).should be

is supposed to be thin as compared to its typical scale ofnodified. If the spatial modulation is sufficiently smooth,

curvature, and it is identified with our local front. We are within the quasistatic approximation, and following the usual

interested here in those situations where the propagatingrojection method$15], Eq. (2) can be generalized to

front describes the invasion of th#, state, either metastable

or unstable, by the globally stablg, state. Up=u(X)+«. (4)

As it is well known, Eq.(1) has a planar front solution
propagating at a well-defined velocity, [8]. When theg,
state is metastable, the velocity, is uniquely determined
[14]. If ¢, is unstable, the steady-state version of Eq).
does not uniquely determine the propagation velocity. In thi
case, the asymptotic front speed is selected dynamically and, ¢"+ugp’ +aF(¢p)=0, 5)
for sufficiently localized initial conditions, it corresponds to
the velocity of the front propagating with the steepest decayhere a prime denotes differentiation with respectt@®y
to ¢»,. When the linear-marginal-stability criterion holdm- rescalingz in Eq. (5) by z=&/\/a, we obtain
ear regimg the front velocity approaches asymptotically the

The explicit relation ofu(x) with the external modulation
a(X) given byu(x) =ug+a(x) can be derived in the follow-
ing way. In the reference frame of the moving one-
Sdimensional stationary frong=y—ut, Eq. (3), reads

valueuy=2+F’(0) [4,5]. However, for some parameter re- d’¢ u d¢
gime near the metastable regignonlinear regimg the d_52+\/_5d_§+|:(¢):0' (6)

linear-marginal-stability criterion fail§8].
When the front is not planar, curvature effects correct therps s the equation of a planar front arranged to the spatially

actual front velocity, tending to restore the planar shape ihomogeneous reaction terfi(¢) propagating at a velocity

the medium is homogeneous, and for a modulated mediumg; ; T : _
' iven byu/+/«. This velocity is nothing butiy, sou=ug+/ «.
providing the spatial coupling that determines the transienrg yive Y d 0 ove

. . L ince this relation is verified at each point of the front, we
dynamics and the final steady state. By projecting (Epon

; ; S T have
the interface and using a quasistatic approximafits 16,
the frpnt dynamics can be well approximated by the local u(x)=Uuo /a(x). )
equation
For numerical integration, it is convenient to write Ed)
vh=Ugt K, (2) as an equation for the front positigrn=y(x,t),

wherev , is the local normal front velocity and denotes the W Yxx 7

o —=—+ V1+ )
local curvature of the front. The normal velocity is taken as At 14 (y,)? u(x) (¥x) ®)

positive if the globally stablep, state is invading thep,

state, and the curvature is taken negative at the tip of a fingén Fig. 2, we compare numerical integrations of the starting

of phaseg;. field model Eq.(3) and of the effective equation of motion
Others types of models could have been considered inEq. (8) for the same temporal evolution of an initially planar

stead of the simple model represented by @9, with two  front. In our simulations we have used a standard finite-

coupled equations, such as in excitable mé¢dig or in so-  difference Euler algorithm witAx=0.5 andAt=0.1. The

lidification system$18], presenting a richer phenomenology. reaction kinetic term considered I ¢) = ¢>— ¢°, and the
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20 In view of Eq.(10) a simple picture of the competition pro-
« ) ee/ cess between fingers arises. The value of the expression in
: parentheses in that equation is the local velocity in yhe
direction. After a short transient, this quantity reaches a
roughly constant value for each finger, but different from
that of other fingers, in such a way that the spatial derivative
in Eq. (10) is very small, and the shape of each finger does
not change significantly. Only the contact points between
fingers, which move with different velocities, will present

—— field model

===~ effective model values for the spatial derivative very different from zero, and

= hence will do so for the time derivative. Therefore, the com-

2, 20 m % %6 00 petition dynamics is basically governed by these contact re-
X gions.

Our approach here will be to build a perturbative scheme

FIG. 2. Same temporal sequence of the propagation of an iniyalig for sufficiently smooth modulations. That will be
tially planar front under the two-maxima moqlulation equivalent to perturbing on the curvature term in Etp),
a(x) =1-0.125 sif(2w/L)x]-0.375 cof(4m/L)X] (see the insel  \ypich heing the highest order derivative, defines a singular
Solid lines correspond to numerical integration of the field m0d6|perturbati0n. It is expected that the curvature in most of the
Eq.(3) with F(¢) = ¢~ ¢° and dashed lines to numerical integra- front will scale with the typical length scale of the modula-
tion of the effective equation of motion E(B). Fronts are plotted tion, while the contact regions between fingers referred to
everyAtzlt_)o in the frame moving at the propagation velocity of abo’ve will behave as boundary layers in the perturbative
the fastest finger. scheme. The matching order by order of the corresponding
inner and outer expansions will define the actual solution of
the problem.

Without loss of generality we take the modulation of the
system as periodic with period, and consider 1/ as our
perturbative parameter. From now on the modulation will be
g{ascribed by the periodic fixed functian(x/L), in such a
vay thatL becomes a parameter that controls the smoothness
of the modulation. We start by obtaining the equation for the
; outer solution by rescaling variables as

external modulatior(x) is given by the two-maxima func-
tion shown in the inset of Fig. 2. Different choices of the
function F(#) may slightly affect the accuracy of the pro-
jected equatiori4). We will comment on this in Sec. VI. In
Fig. 2, fronts are shown at different times in a frame moving
at the propagation speed of the fastest finger. We see that
both models the slow finger on the left is eliminated, and th
front reaches a stationary shape with just one fingmral
maximun), that is, a qualitatively different pattern from tha
of the external modulatior(x). This simple case illustrates

how the effective local equation for the front E§) captures 7= f, = i (11)

the competition mechanisms present in the original field L L

model, with the advantage of a much simpler analytic and _ . )

numeric treatmentsee Sec. I). Figure 1 presents also the Which gives

same phenomena but with a more complicated modulation. Jgtand g ( uz 146 .
lll. ANALYTICAL DESCRIPTION gr  ozicos L 4z

OF THE COMPETITION PROCESS As stated before, starting from a planar front, each local

The main guestion we address in this section is the anamaximum of the functioru(z) forms a local maximum or
lytical description, in the context of a singular perturbationfinger of the front. The stationary shape of each competing
scheme, of the competition procelskd]. To this aim, we fingeri moving at a velocitw' is then given by
write Eqg.(4) in terms of the angle variabl&(x,t), defined by
tand=dy/dx (see Fig. 2 The following geometrical rela- ;u(z) 196
tions hold: Vo L az (13

0= v COSh, K:a—ecosﬁ. Substituting the following expansions in the above B):

oXx
i i
This can be substituted into E(#) to obtain v'=vot pogt- - (14
_u 9 . 1
"= o T X © 0(2)= b2+ - D)+, 15

Given thaty(x,t) = [*dx'tand, we differentiate Eq(9) with

) we obtain at the lowest order,
respect tax to obtain

cov(2) u@) (16)
Z)=———,
(10) 0 vl

(?tana_ J u(x)+§0
gt ox\cos  ax/
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090 36 520(920 , 0&6 o1
—= —+usingd—.
at co Ix2 us X (21)
v4
085 | Inner solutions coming from this equation, valid inside the

boundary layer, have to be matched with the outer solutions
found before, which are valid in the regions outside the
boundary layer. That gives, as boundary conditions for a

080 r layer placed between two fingers moving at velocities

v andv , , the following
o7s : . : : lim 65'(x)= 6., (22)
0.0 0.2 04 0.6 08 1.0 X— + 0
xL
FIG. 3. Competition process between two fingers. The vertical C099+:i_ (23
component of the local velocity of the front is plotted evéry=50 T U=
for the same evolution shown in Fig. 2. The effective transversal
velocity ¢ [see Eq(25) in the tex] is also indicated. We next look for a stationary solution of E@1) of the form
0(x,t)= 0(x—ct)=0(&), which satisfies
o1 / . u'(2) _
1(2)_ i i vt . i (17) 0"+ (usind+c)6' =
and, for the velocities, where a prime denotes differentiation with respect to
&=x—ct. An integration of this equation gives
vh=ul, (18) u
0'+ ——+ctand=K,
cosy
ul i) 172
vi1= —( i ) , (199  whereK is a constant. Its value is obtained by imposing the
U boundary condition Eq(22), with the result
i in . .
whereup, anfjum are the valug and th.e secqnd der_lvat!ve of K = +ctand. .
the modulating functiom(z) at its maximum in the fingeir. coY..

In view of Eq. (19) the velocity is corrected by the length
scale given by the spatial variations of the modulating func: So we obtain, for the velocity of the lateral invading front,
tion u near its local maximum. This result can be directly v —D
translated to the original field model E). In particular, c=——+ 7= (24)
; ; _ ; tand_ —tand
given the relatioru(x) = ugya(x), we obtain, up to the low- +

est orders in the inverse system size, This invading front that describes the competition between

the two fingers does not propagate uniformly since, accord-
| | v ing to Egs.(16) and(17), 0. ride on the local details of the
V= Uo\ ap— ; (200 modulated velocityu(x). This invasion process is clearly
seen in recent experiments3]. Making use of Eq(23), the

_ spatial dependence of the invasion velodcitynay be explic-
whereqy, is the value of the spatial modulatiarn(x) at the itly written as

maximum of theith finger, anda,,” its second derivative at
the same maximum. 5 5
The nature of the competition process among fingers is €= U4 +v, [‘/U — U0 =%~ U],
clearly illustrated in Fig. 3, where the local velocity of the
front in they direction,v=4dy/dt, is plotted for the same The propagation velocities of the two fingers, , are given
spatial modulation and the same planar initial condition as iy Egs. (18) and (19) when evaluated at the two local
Fig. 2. Figure 3 shows that the slower finger is actually bemaxima ofu(x).
ing invaded by the faster one, as if a one-dimensional front The analytical prediction for the invasion velocity Eq.
were propagating laterally, in the direction, with a certain  (25), is not valid in the initial short transient when fingers are
velocity c. This effective front is well defined within our still not formed. Once the front forms its initial fingers, as
perturbative scheme, and its dynamics can be obtained froglictated by the form ofi(x), the competition process that
the inner solution of the equations in the boundary layersrises is well described by E@5) as long az% —u?(x) is
placed at the contact regions between fingers. We write thenon-negative.
Eqg. (10) in the original variablex, t and, up to the lowest In Fig. 4 we compare the analytical predictions of Eq.
order in 1L, consideru as a constant. We obtain (25) for the caseF($)=¢>— ¢°, to numerical integrations

(25
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FIG. 4. Scaled velocite of the transversal invading front for FIG. 5. Stationary velocity for fronts propagating under Gauss-

two systems of different sizes (cf. figure legeniunder the same  ian modulations with different tip curvaturésy|. Dashed line cor-
external modulatlon s_hqwn in Fig. 2. Thick so_hd lines correspondresponds to the perturbative result E26) that gives accurate val-
to the analytical prediction, Eq&25), for each sizd. . ues for sufficiently smooth modulatiorismall | ky|).

of the effective front motion Eq(8) for systems of two dif-  ways satisfied for sufficiently large. Conversely, any sec-
ferent sized. but the same two-maxima spatial modulation ondary local maximum withu greater tharv will present a

a(z) and the same planar initial front. negative curvatur¢see Eq.(4)], and thus will form a sec-
ondary finger. In this way, the comparison between the value
IV. STATIONARY STATE of v and that of the different local maxima af(x) does

provide a criterion to identify the surviving fingers in the

A result from the perturbative analysis above is that, forfinal stationary state, such as those for whith>v. On the
Laorr%]ee eorlﬁggté:glnza&?rigno?‘irr\zurrr:/géﬁéﬁr:/er;&gii;e Ie;);'osrtnother hand, to obtain from the perturbative analysis a good
9 : prediction for the selected velocity one has to take the

t/r;?ulsawoeslt-?(r)dri;]:F;%fc))(lll:?:trlr?gii51?14) gl(\)/fe tshgigggzleat(i:ﬁr- largest value taken by Eql4) at the different local maxima
y My 9 g'm of u(x). Notice that the selected velocity calculated this

function. In that case, only the fastest finger survives, and it ) )
velocity is adopted by the whole front. This velocity is in the way and, therefore, the final statl'onqry front shape, erend
original, fully dimensional, variables not only on the values af(x) at their c_zllffe_rent local maxima
but also depend on the second derivative of the modulation

12 at those maxima.

(26) With this picture in mind, a more detailed discussion of
Fig. 1 is now in order. This figure shows the case of an
eight-maxima modulating function. The steady state presents
only five maxima or fingers, instead. Finger numbers 2, 5,
and 7 have been eliminated during the transient. In the upper

vt

v=Uy— Uy

The shape of the front is again given by E¢s5) and (17),
but applied to the valuesy, anduy, of the absolute maxi-

mulrr? grLrjrS;()bf the external modulation(x), this velocit part of the figure we see how the initial planar front develops
reads ’ Y the eight maxima of the modulatiofbottom of the same

figure). The competition process then sets in on a much
o[\ 12 slower time scale. In the bottom of Fig. 1 we also see how
v:uom—(—M> (27 maximum 4 has the largest predicted velocity according to
2ay Eqg. (26) (denoted by crossgswhich determines the final
velocity (dashed ling Maxima numbers 1, 3, 6, and 8 also
ave a larger value af(x) at their tip than the final selected
velocity, and therefore they survive all the way to the steady
state. This example also shows how the final shape of the
front can be very different from that of the modulation.

This perturbative result gives the more accurate values f
the whole front velocity the larger is or, equivalently, for a
fixed L, the smoother is the external modulation. In Fig. 5 we
show the stationary front velocity foF ()= ¢2— ¢° and
for a(x) given by a Gaussian centered irLa 500 system.
The Gaussian modulation has a fixed maximug= 1.5, so
the curvature at the tigxw|=|ay,| provides a measure of
the length scale of the spatial variation of the modulation, In this section we consider the particular case in which
(|aKA|/aM)‘1’2. The broken line in Fig. 5 corresponds to the u(x) takes a constant valug, in a central stripe of widthw
analytical result Eq(27) and, for sufficiently smooth modu- along they direction, and a smaller constant valug out-
lation, agrees accurately with results from numerical integraside. This is clearly an exception to the perturbative treat-
tion of both the localeffective and the two field models. ment of Sec. IV because the modulating function is not
In general, the single-finger stationary state will only oc-smooth. We address this case here because it has been pre-
cur if the velocityv selected by the system and given, up toviously studied both theoretically and experimentally in Ref.
the first order, by Eq(26), is greater than the value of the [11], which directly motivated the present study. In that ref-
other local maxima of the function. This condition is al- erence the theoretical predictions were obtained numerically.

V. STRIPED CASE
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Here we will provide some analytical results with the hope 090
of gaining some insight into a situation where the perturba-
tive approach is not appropriate, particularly from the depen- T A L AR S S e §
dence of the steady state on the parameters of the problem.  °®*f é«ﬁ 1
According to Eq.(8), the steady-state shape of the front | s
must satisfy om| &
Y"=(1+y'2)v—U(X)(1+y’2)3/2, (28) / O field model ¢ — ¢
& 3
where we have used the fact that gy/at is the constant oI
velocity of the whole front in they direction. This equation ,
can be solved piecewise for constar(tx), so an explicit m:’ . a 1
5

solution for this case can be found by appropriate matching
at the boundaries between regions.

_ The fact that the perturbative prediction fails here is ob- g 6. stationary velocity for fronts propagating in striped me-
vious from the fact that all orders except the lowest onegia with u,=0.866 andu,,=0.707 as a function of the central
vanish, since all derivatives af(x) are zero. However, no- stripe sizeW. Dashed line is the analytical prediction E§3).
tice that the zeroth-order solution does describe the correct
largeL limit, which corresponds to three straight pieces, oneloops are unphysical, so the matching points with the exter-
horizontal in the central stripe, and two inclined ones on thenal solutions Eq(31) must be such that there are no loops
sides of the stripe, with angles given by Ed6), and a between them. This physical requirement provides a lower
selected velocity equal toy . bound to the selected velocity, by imposing that the distance

In order to obtain explicit analytic expressions for the between the turning points with infinite slope be greater or
selected velocity we will find a rigorous lower bound using equal than the size of the central band The bound fora,
the explicit solutions for constant(x). This bound will in- s then given by the equation
deed turn out to be a very good estimate of the actual se-
lected velocity. m—arcsin/l—a?=3\1-ai(r+umaW). (32
To solve Eq.(28) by reduction of order, we seek a solu-
tion of the formy’ =sinhé Its substitution into Eq(28) The lower bound for the steady front velocity obtained from
gives a first-order equation fa, the previous equation turns out to be very close to the actual
velocity selected from the complete matching of the solu-
tions, since the solution near the turning point has a large
ﬁ=(v—ucosff)cosk§, (29 curvature, so the point with the right slope should be very
close to it. Given that

w

which is easy to solve by direct integration.

Without loss of generality let us assume that the central 1_a2:(”M_U)(UM+U) _pdMTY
stripe is placed at the center of the system of dizaith ¢ uf,l Um
periodic boundary conditions. Then the symmetry of the
problem enables us to solve E@9) for the central and a further development of Eq32) yields
lateral regions separately. The solutigp for the central

band 0<x<W/2 with y’(0)=0 is then ! 272Uy, 33
v~ e
, M (BrtuyW)?
ar’ 1 / a1ty —1 7o
Xv =arctary,— | arcsin —— =, : . .
c \/1—a§\ ac—V1+y2 2 Notice that the dependence & displayed by Eq(33) is

(30) quite different from that the system size dependence ob-
tained for the smooth case in the framework of the singular
with a,=v/uy<1. The solutiony, for the lateral region perturbative scheme. The excellent accuracy of these ap-
W/2<x<L/2 with y’'(L/2)=0 is given by proximated results can be seen in Fig. 6. An exhaustive the-
oretical study of a model system with two bands of different
L excitability (local velocity was presented very recently in
X5 Ref. [20]. Their results are in agreement with the ones ob-
tained in this section.

v =arctary/

R (a.—1)(1+\1+y/?)+y/Jai—-1
n 1
faZ—1 (a,—1)(1+1+y/D)—y/ JaZ—1 VI. CONCLUDING REMARKS

(30 The results presented in this paper refer basically to the
local model derived from standard projection techniques
with a,=v/u,>1. For the lateral region there exists also thefrom a reaction-diffusion field model, where the nonlinear
trivial family of planar solutions given by cés=u/v. function defining the reaction term has not been specified. In
The solution at the central band, Eg0), is periodic. The the simulations reported here we usep) = ¢>— ¢°, for
most relevant feature is that it intersects itself, giving rise towhich we have quantitatively checked the validity of the
periodic loops, separated by mostly planar regions. Theskcal approximation. The question of the degree of indepen-
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0.6 bitrary large deviations in the front position. In Fig. 7 we
show the convergence to the steady value in the two cases of
osTho F(¢). Itis also shown the effect of the spatial discretization,

which may produce errors comparable to the transient ef-
fects.

If a more complicated model than E) is chosen, but
» ] presenting a front structure obeying E&), then our conclu-
sions apply in the same way. Our theoretical results are in
agreement with recent experiments in front propagation in
excitable medid11,13.

In conclusion, we have studied fronts propagating through
two-dimensional media modulated in the transverse direc-
tion. An effective local equation for the motion of the front

FIG. 7. Transient effects of the nonlinearities in the numericalhas been derived and it has been used to explain, in the
evolution of the front velocity. Full symbols correspond to the context of a singular perturbation scheme, the dynamics of
F(¢$)=¢— ¢* model, and hollow symbols to the(¢)=¢>—¢°>  the competition process leading to the nontrivial stationary
model. Triangles correspond fox=1, and circles taAx=0.5. The  solution. Explicit criteria to determine the qualitative shape
cross is the analytical value of the velocity. of the stationary front and quantitative estimations of the

steady front velocity have been found for the generic case of

dence of the result on the nonlinear functifp) naturally ~ SMooth modulations and for a particular case of nonsmooth
arises. It is well known that the presence of a linear terminodulation with relevance to experiments. A generic picture
such as irF (¢) = ¢— ¢ changes the nature of the velocity of competition between f|_ngers has naturally arisen in terms
selection problen{8]. For F(¢)=¢— ¢°, linear marginal of I.at'eral fro_nts p_ropagatlng in t'he transversg dlr(_actlon .de—
stability theory applies, and the transient decay to the stead§crPing the invasion of slower fingers by their neighboring
state is of power-law nature. For the caBp) = ¢?— ¢S, aster ones. Finally, the_ reliability of the eﬁe(_:tl_ve local equa-
instead, nonlinear theory applies, and the transient regimion for different reaction terms of the original reaction-
decays exponentially. This difference is important since th&liffusion model has been discussed.

guasistatic approximation involved in the projection of the
problem into a local equation is not as well justified in the
linear case due to its long transients. Although simulation of
the linear model may give apparently stationary shapes We acknowledge financial support from the Diréecio
which are qualitatively similar to the ones obtained with theGeneral de InvestigaaioCientfica y Tecnica(Spain under
nonlinear model, in the former case it is always much moreProject Nos. PB96-0421 and PB96-1001, and Fund@aia-
difficult to conclude about stationary states because of conlana per a la Recerca-Center de Supercomputdei€ata-
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